
Using TAME to Prove Invariants of Automata Models:
Two Case Studies �

To be presented at FMSP '00, Portland, OR, August 24-25, 2000

Myla Archer
Naval Research Laboratory

Code 5546
Washington, DC 20375

archer@itd.nrl.navy.mil

Constance Heitmeyer
Naval Research Laboratory

Code 5546
Washington, DC 20375

heitmeyer@itd.nrl.navy.mil

Elvinia Riccobene
Dipartimento di Matematica e

Informatica
Università di Catania

Viale A. Doria 6, I-95125
Catania, Italy

riccobene@dmi.unict.it

ABSTRACT
TAME is a special-purpose interface to PVS designed to
support developers of software systems in proving proper-
ties of automata models. One of TAME's major goals is
to allow a software developer who has basic knowledge of
standard logic, and can do hand proofs, to use PVS to rep-
resent and to prove properties about an automaton model
without �rst becoming a PVS expert. A second goal is for
a human to be able to read and understand the content
of saved TAME proofs without running them through the
PVS proof checker. A third goal is to make proving prop-
erties of automata with TAME less costly in human time
than proving such properties using PVS directly. Recent
work by Romijn and Devillers et al., based on the I/O au-
tomata model, has provided the basis for two case studies on
how well TAME achieves these goals. Romijn speci�ed the
RPC-Memory Problem and its solution, while Devillers et
al. speci�ed a tree identify protocol. Hand proofs of speci�-
cation properties were provided by the authors. In addition,
Devillers et al. used PVS directly to mechanize the speci�-
cations and proofs of the tree identify protocol. In one case
study, the third author, a new TAME user with no previous
PVS experience, used TAME to create PVS speci�cations of
the I/O automata presented by Romijn and Devillers et al.
and to check the hand proofs of invariant properties. The
PVS speci�cations and proofs of Devillers et al. provide the
basis for the other case study, which compares the TAME
approach to an alternate approach which uses PVS directly.

Keywords
Software engineering, software requirements analysis, formal
methods, veri�cation, theorem proving.

�This research is funded by the O�ce of Naval Research.

1. INTRODUCTION
Several authors [25, 8, 9, 7] have found that the PVS spec-
i�cation language and similar strongly typed, higher-order
logic languages are well suited to the formalization of sys-
tem speci�cations. All report that appropriately structured
PVS speci�cations can be understood by practitioners, such
as design engineers and requirements analysts.

Yet, a number of barriers exist to more widespread indus-
trial use of formal techniques such as PVS. Although Miller
notes in [25] that engineers at Collins Aviation learned to
use PVS, the authors of each of [25, 8, 9, 10] concede that in
general practitioners themselves may be unwilling or unable
to create formal speci�cations or to perform analysis of the
speci�cations using the PVS proof checker. Further, But-
ler et al. [8] observe that one barrier to transferring formal
methods technology to industry is that:

Training the industrial experts to use the formal
techniques, especially to develop skill in veri�ca-
tion, [is costly].

The high cost of training industrial experts is not the sole
barrier to more general use of PVS (or other theorem proving
systems) to formalize and to prove properties of speci�ca-
tions. For a given system, a user must discover an appro-
priate representation in the language of the theorem prover.
Formal proofs of system properties will be inuenced by the
details of the representation, the particular reasoning steps
available in the theorem prover, and the manner in which
the properties are formalized. The e�ort required therefore
is substantial even for those who have mastered the use of
the theorem prover. Moreover, direct use of any general
theorem prover can encourage users to adapt both speci�-
cations and proofs to the needs of the prover rather than to
the conventions associated with the problem domain. As a
result, practitioners may �nd it di�cult to relate the formal-
ization of their system and formal proofs of its properties to
their understanding of the system behavior and their beliefs
as to why it has certain properties. We agree with Butler et
al. [8] when they state that:

[T]he formal methods researchers must be willing
to adapt their methods to the problem domain
rather than �ght to change the existing method-
ologies to conform to their needs.

TAME (Timed Automata Modeling Environment) [3, 5, 6,
2] is a specialized interface to PVS that is intended to re-



move, or at least reduce, the barriers to more general use
of PVS in verifying automata models. It supports the cre-
ation of PVS descriptions of three di�erent automata mod-
els: Lynch-Vaandrager (LV) timed automata [23], I/O au-
tomata [21], and the automata model that underlies SCR
speci�cations [16]. Further, TAME supports formulating
properties of these automata in standard logic and proving
the properties using reasoning \natural" to humans. A ma-
jor goal of TAME is to improve on the direct support that
PVS provides for specifying, and proving properties of, au-
tomata. To make PVS speci�cations of automata easy to
create from automaton descriptions, TAME provides tem-
plates for specifying automata. To make PVS proofs of
properties of automata easy to create, TAME provides PVS
strategies which support the kinds of proof steps normally
found in hand proofs of invariant properties of automata.
In particular, TAME is intended to support straightforward
construction of a mechanized proof of an invariant property
from a high level hand proof that expresses an application
expert's explanation of why the property should hold.

In recent work by Romijn [28, 27] and Devillers et al. [12,
11], example systems to be implemented in software were
speci�ed and veri�ed using the I/O automata model. This
work, together with the availability of a volunteer TAME
user with no previous PVS experience (the third author),
gave us an opportunity to evaluate the extent to which
TAME has achieved its goals. Both [28] and [12] provide
descriptions of I/O automata and formulations of their prop-
erties. References [27] and [11] provide hand proofs of most
of the properties in [28] and [12] in varying degrees of detail.
Thus, the third author had several example speci�cations
and proofs to which she could apply TAME. In addition, ref-
erence [12] describes the PVS speci�cation and proofs for one
application, an I/O automaton called TIP , with a pointer
to the actual speci�cation and proofs on the web. This gave
us the opportunity to compare the use of TAME with the
more direct use of PVS on one particular problem.

Section 2 of this paper provides a high level description of
TAME, its templates, and its strategies. Section 3 then com-
pares the PVS approach to speci�cation and proof for TIP
[12] to the TAME approach to the same problem. (Although
this case study was done after the study of TIP by the third
author discussed in Section 4, we describe it �rst because it
clari�es the di�erence between using PVS through TAME
and using PVS directly.) Section 4 describes the experi-
ence of the third author in applying TAME to the examples
of references [28, 27, 12, 11], with particular attention to
1) the time and e�ort required and 2) the adequacy of the
TAME proof steps for mechanizing the proofs of invariants.
Section 5 discusses the results of Sections 3 and 4 and de-
scribes some improvements in TAME that resulted from the
case study in Section 4. Finally, Section 6 describes related
work, and Section 7 presents our conclusions.

2. TAME
For software developers in industry, model checking is often
viewed as more practical than theorem proving for estab-
lishing properties of software systems. While clearly an im-
portant technique for developing correct software systems,
model checking does not solve all of a software developer's
problems. For example, although model checking is often
described as automatic and therefore requiring less exper-

tise from the user, the user, due to the state explosion prob-
lem, must typically model check an abstraction of a given
system rather than the full system. Finding the appropri-
ate abstraction often requires user ingenuity and creativ-
ity. Even when abstraction is used, state explosion can pre-
vent a model checker from running to completion, and thus
from establishing the correctness of a property. Moreover,
in speci�cations involving parameters, model checking alone
can only check correctness for speci�c (usually small), rather
than arbitrary, values of the parameters. The protocols from
[28] and [12] involve both parameters and another feature|
complex data types|problematic for a model checker. Thus,
for the veri�cation of these and similar examples, theorem
proving is necessary.

TAME is intended to reduce the human e�ort associated
with mechanical theorem proving using PVS. To achieve
this, TAME provides an interface to PVS [3, 5, 6, 2]. This
interface consists of a set of templates for specifying au-
tomata, a set of standard theories, and a set of standard
PVS strategies. Below, we provide an overview of the tem-
plates, theories, and strategies, and how they are related.
We also discuss the major goals which have guided the de-
sign of the TAME strategies.

TAME Templates. TAME currently provides templates
for each of the three classes of automata mentioned in Sec-
tion 1: LV timed automata, I/O automata, and SCR au-
tomata. Each template provides a standard structure for
de�ning an automaton. Because LV timed automata are
essentially I/O automata with time added, the template
originally designed for specifying LV timed automata was
easily adapted to specifying I/O automata. To de�ne an
automaton of either of these two classes, the user provides
the information indicated in Figure 1.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Template Part User Fills In Remarksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
actions Declarations of The nondefault cases of the

non-time-passage actions actions datatypeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MMTstates Type of the “basic state” Usually a record type

representing the state variablesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OKstate? An arbitrary state predicate Default is true

restricting the set of statesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
enabled_specific Preconditions for all the enabled_specific(a) =

non-time-passage actions specific precondition of action aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
trans Effects of all the actions trans(a,s) = state reached

from state s by action aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
start State predicate defining the Preferred forms: s = ... or

initial states s = (# basic := basic(s)
WITH ...

... #)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
const_facts Predicate describing relations Optional

assumed among the constantsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 1: Information in the TAME template

Speci�cations of I/O automata in the style used by Devillers
et al. [12] and Romijn [28] (see Appendix A for an exam-
ple) can be easily translated into TAME speci�cations. The
de�nitions of the actions of the I/O automaton provide the
names and argument types needed for their TAME declara-
tions, preconditions and e�ects. The de�nitions of the state
variables and their types in the I/O automaton speci�cation
provide the information needed to de�ne the type of the ba-
sic state as well as any needed auxiliary type de�nitions
in the TAME speci�cation. The initial state information
for the I/O automaton is translated into the initial state
predicate start of the TAME speci�cation. Finally, any
constants and predicates relating constants de�ned for the
I/O automaton can be represented in the TAME speci�ca-



tion using constant declarations and the axiom const facts.
TAME does not provide automated support for composing
automata or reasoning directly about an automaton de�ned
as a composition. However, when an I/O automaton is de-
�ned as the composition of two or more other I/O automata
(this happens with some of the automata in [28]), the user
can combine the information extracted from the individual
automaton descriptions to produce a single TAME speci�-
cation in a (usually) straightforward way.

TAME Proof Steps. The standard strategies of TAME
are designed to support mechanical reasoning about au-
tomata using proof steps that mimic human proof steps.
These strategies are based on type and name conventions en-
forced by the templates, the TAME standard theories, and
additional special de�nitions, auxiliary local theories, and
local strategies that can be generated from a particular tem-
plate instantiation. For example, lemmas in the standard
theory machine support the induction strategy AUTO IN-
DUCT (see Figure 2). The auxiliary local theories contain
lemmas used to support rewriting and forward chaining need-
ed in \obvious" reasoning about the particular application.

Reference [2] lists the TAME user strategies useful for I/O
and LV automata, and describes their e�ects. These strate-
gies implement proof steps typically used in hand proofs
of automaton properties. Hand proofs of invariant proper-
ties typically contain only proof steps from a limited set.
Figure 2 lists the most common proof steps used in invari-
ant proofs and names the TAME strategies that implement
them. TAME strategies also exist for several steps needed
less frequently than those listed in Figure 2.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Proof Step TAME Strategy Remarksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Break down into base case and AUTO_INDUCT For starting an
induction (i.e., action) cases, and induction proof
do standard first steps of each caseiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Appeal to precondition of an APPLY_SPECIFIC_PRECOND Used when needed
action in induction casesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Apply the inductive hypothesis APPLY_IND_HYP Used when needed
to argument(s) other than the in induction cases;
(default) skolem constant(s) needs argument(s)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Perform the standard initial steps DIRECT_PROOF For starting a
in the direct proof of an invariant non-induction proofiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Apply an auxiliary invariant APPLY_INV_LEMMA Used in any proof;
lemma needs argument(s)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Break down into cases based SUPPOSE Used in any proof;
on a predicate needs boolean argumentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Apply “obvious” reasoning, e.g., TRY_SIMP Used for “it is now
propositional, equational, datatype obvious” in any proofiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Use a fact from the mathematical APPLY_LEMMA Used in any proof;
theory for a state variable type needs argument(s)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 2: Common steps for invariant proofs and
their TAME strategies1

Major Goals of the TAME Proof Steps. One ma-
jor goal of the TAME proof steps is to save the user from
much of the tedium typical of proofs done directly in PVS.
One technique for achieving this (used in almost all of the
TAME strategies) is to incorporate repeated patterns of
steps. Several repeated patterns are incorporated into the
TAME strategy AUTO INDUCT. In some cases, a re-
peated pattern becomes a single proof step. For example,
the TAME strategy called APPLY INV LEMMA, with
the appropriate arguments, introduces the desired invari-
ant lemma, instantiates it, expands the invariant, and dis-

1Here and below, a name in bold capital letters denotes a
TAME strategy.

charges the reachability condition that is the hypothesis of
the lemma. Another technique TAME uses to eliminate te-
dium is to automate certain inferences which are \obvious"
to humans but which, in PVS, require detailed user guidance
together with knowledge of the behavior and some of the
more obscure proof steps of the PVS prover. Several such
inferences relate to the PVS DATATYPE construct. For
example, if con and des are a corresponding constructor-
destructor pair in a datatype A, it is obvious to a human
that con(des(a)) = a whenever a is a \con" value of A.
To establish this needed fact in a proof, the PVS user must
apply the PVS step APPLY-EXTENSIONALITY. Estab-
lishing other simple facts about data types can require the
PVS steps REPLACE and CASE to do explicit substitution
and judicious case splitting. The auxiliary local theories
that can be generated from a template instantiation provide
the conditional rewrite rules and lemmas used by the TAME
strategy TRY SIMP to make such inferences automatic.

A second major goal of the TAME proof steps is to make
saved PVS proofs understandable by humans without exe-
cuting them in PVS. Saved TAME proofs have a clear struc-
ture, with the meanings of the proof branches indicated by
comments automatically generated by TAME. The mean-
ings of the individual TAME proof steps can be inferred from
their names and arguments. In verbose mode, TAME prints
extended comments showing the exact facts introduced, so
that the reader of a proof does not need to look up partic-
ular lemmas, preconditions, etc. (Sections 3 and 5 contain
example TAME proofs.)

Finally, the TAME proof steps are designed to give users im-
proved feedback from PVS in the course of a proof, through
appropriate labels on formulae that indicate their origin,
and hence their signi�cance. For example, the strategy
AUTO INDUCT labels formulae in subgoals correspond-
ing to induction cases according to whether they come from
the precondition, inductive hypothesis, or inductive conclu-
sion, or express the fact that the prestate or poststate of an
induction step is reachable. When the TAME step SUP-
POSE is applied to an assertion argument P, the current
subgoal will be split into two subgoals, one with the hypoth-
esis P labeled Suppose and the other with the hypothesis
not(P) labeled Suppose not.2 Facts introduced with AP-
PLY INV LEMMA or APPLY LEMMA will be given
a label lemma <lemma-name> derived from the name of the
lemma. In later subgoals, the descendants of a labeled for-
mula retain the labels of their parent and are thus useful in
indicating the reason for the presence of new formulae. The
ability to label formulae, a recent new feature of PVS, is
important in the execution of, as well as the feedback from,
the TAME strategies.

3. FIRST CASE STUDY
Reference [12] describes the direct use of PVS to mechanize
the proofs of properties of an automaton called TIP, a tree
identify protocol. Below, we contrast the TAME approach
with the direct PVS approach, drawing from the third au-
thor's results from applying of TAME to TIP. For brevity,

2Technically, because PVS does not allow negative formu-
lae to appear at the top level of a sequent, the hypothesis
\not(P)" in the \Suppose not" subgoal will appear as \P"
in the \wrong half" of the sequent (assuming P itself is not
a negation).



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

To prove: For every reachable state s, for every edge e,
length(mq(e,s)) <= 1.

Proof: The proof is by induction. The assertion is trivial for the base case, i.e., when s
is an initial state. For each action of TIP, it remains to prove the corresponding induction
case, i.e., that the assertion is preserved by that action. Only three of the induction cases
are nontrivial.

Case 1: The action add_child(addE). Let the value of the parameter addE of
add_child be addE_action, and consider the edge e_theorem. First, apply the
specific precondition of add_child(addE_action). Then, consider separately the
cases e_theorem = addE_action and e_theorem =/ addE_action. In each
of these cases, the proof is now obvious.

Case 2: The action children_known(childV). Let the value of the parameter
childV of children_known be childV_action, and consider the edge
e_theorem. Consider separately two cases. Suppose first that
source(e_theorem) = childV_action. In this case, first appeal to the specific
precondition of children_known(childV_action) and then apply Invariant I 2
in the prestate to e_theorem. The remainder of the proof in this case is now obvious.
The proof in the case source(e_theorem) =/ childV_action is obvious.

Case 3: The action ack(ackE). Let the value of the parameter ackE of ack be
ackE_action, and consider the edge e_theorem. Consider separately two cases.
Suppose first that e_theorem = ackE_action. Appeal to the specific precondition
of ack(ackE_action). The proof in this case is now obvious. The proof in the case
e_theorem =/ ackE_action is obvious.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3: Natural Language Proof of Invariant I5

we refer to \TAME" speci�cations and proofs and \PVS"
speci�cations and proofs.

Comparing Proofs of Invariants. The most dramatic
di�erence between the PVS approach of [12] and the TAME
approach is in the proofs of invariants. The TAME proofs
are much shorter, and the signi�cance of proof branches and
individual proof steps is much clearer. Moreover, the TAME
proofs correspond in a very clear way to the hand proofs in
[11]. In fact, the TAME proofs for those TIP invariants
for which hand proofs were provided were done by refer-
ring to the hand proofs. (See Section 5 for more details.)
This method di�ers from the method used by the authors of
[12], who found the hand proofs of little use in guiding their
mechanization in PVS, and did not try to follow them.

Proofs in general have a natural tree structure. Branching
occurs when the proof breaks into cases or when extra proof
obligations are created by a proof step. When a user creates
a proof interactively in PVS, PVS saves an executable script
of the proof, recording both the proof steps invoked by the
user and the branching structure of the proof. In the ex-
ample TAME and PVS proofs in this paper, the proof steps
supplied by the user are in Roman font with the names of
TAME strategies in bold, and the parts of the proof scripts
created by PVS are in italics. The italic numbers in quotes
represent the addresses of the proof branches in the tree
and hence show the tree structure. The TAME proofs also
include comments (in italics and preceded by semicolons)
automatically generated by the TAME strategies.

The resemblance of TAME proofs to hand proofs is illus-
trated by the natural language proof of TIP Invariant I5
in Figure 3. This proof was obtained by hand translating
the TAME proof of I5 in Figure 4 in a straightforward way.
Although the hand proof from which the TAME proof of
I5 was derived was a Lamport-style proof [18] rather than
a natural language proof, TAME proofs can also be (and
have been) derived from natural language proofs providing
the level of detail of the proof in Figure 3.

Figure 5 presents the PVS proof of TIP Invariant I5 de-
veloped by Devillers et al. [12]. As the translation in Fig-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Inv_5(s:states): bool = (FORALL (e:Edges): length(mq(e,s)) <= 1);

(""
(AUTO_INDUCT)
(("1" ;;Case add_child(addE_action)

(APPLY_SPECIFIC_PRECOND)
(SUPPOSE "e_theorem = addE_action")
(("1.1" ;;Suppose e_theorem = addE_action

(TRY_SIMP))
("1.2" ;;Suppose not [e_theorem = addE_action]

(TRY_SIMP))))
("2" ;;Case children_known(childV_action)

(SUPPOSE "source(e_theorem) = childV_action")
(("2.1" ;;Suppose source(e_theorem) = childV_action

(APPLY_SPECIFIC_PRECOND)
→→ (APPLY_INV_LEMMA "2" "e_theorem")

(TRY_SIMP))
("2.2" ;;Suppose not [source(e_theorem) = childV_action]

(TRY_SIMP))))
("3" ;;Case ack(ackE_action)

(SUPPOSE "e_theorem = ackE_action")
(("3.1" ;;Suppose e_theorem = ackE_action

(APPLY_SPECIFIC_PRECOND)
(TRY_SIMP))

("3.2" ;;Suppose not [e_theorem = ackE_action]
(TRY_SIMP))))))

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4: TAME Proof of Invariant I5

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

INV_5((s: states)): bool = (FORALL (e: E): length(mq(s)(e)) <= 1)
(""
(EXPAND "invariant?") ("2.1.1.3" (ASSERT)))) (ASSERT)
(PROP) ("2.1.2" (INST?)))) (INST?)
(("1" ("2.2" (("2.3.1.1.1"

(SKOSIMP*) (SKOSIMP*) (EXPAND "member")
(EXPAND "INV_5") (EXPAND "steps") (EXPAND "froms")
(SKOLEM!) (EXPAND "ACK_step") (ASSERT)
(EXPAND "Init") (PROP) (HIDE –2 –3 –4)
(PROP) (REPLACE –1 :HIDE? T) (INST?)
(HIDE –1) (EXPAND "INV_5") (EXPAND "append")
(INST?) (SKOSIMP*) (EXPAND "length" 1)
(PROP) (LIFT-IF) (EXPAND "length")
(HIDE 1) (PROP) (ASSERT))
(EXPAND "length") (("2.2.1" ("2.3.1.1.2"
(ASSERT)) (INST?) (EXPAND "tos")
("2" (ASSERT) (EXPAND "target")
(SKOLEM 1 (S _ T)) (HIDE –1 2 3) (EXPAND "inv")
(INDUCT "a" 1) (EXPAND "tl") (EXPAND "member")
(("2.1" (EXPAND "length") (EXPAND "froms")

(SKOSIMP*) (LIFT-IF) (PROPAX))))
(EXPAND "steps") (PROP) ("2.3.1.2"
(EXPAND "A_C_step") (("2.2.1.1" (ASSERT)) (EXPAND "tos")
(PROP) ("2.2.1.2" (ASSERT) (EXPAND "member")
(REPLACE –2 :HIDE? T) (EXPAND "length") (EXPAND "froms")
(EXPAND "INV_5") (LIFT-IF) (EXPAND "inv")
(SKOSIMP*) (ASSERT)))) (EXPAND "target")
(LIFT-IF) ("2.2.2" (INST?)))) (PROPAX))))
(PROP) ("2.3" ("2.3.2" (HIDE –2) (INST?))))
(("2.1.1" (SKOSIMP*) ("2.4" (SKOSIMP*)
(INST?) (EXPAND "steps") (EXPAND "steps")
(REPLACE –1 :HIDE? T) (EXPAND "C_K_step") (EXPAND "R_C_step")
(HIDE –1) (PROP) (PROP)
(HIDE 2) (REPLACE –3 :HIDE? T) (REPLACE –3 :HIDE? T)
(EXPAND "tl") (EXPAND "INV_5") (EXPAND "INV_5")
(EXPAND "length") (SKOSIMP*) (PROPAX))
(ASSERT) (LIFT-IF) ("2.5"
(LIFT-IF) (PROP) (SKOSIMP*)
(PROP) (("2.3.1" (EXPAND "steps")
(ASSERT) (INST?) (EXPAND "ROOT_step")
(EXPAND "length") (("2.3.1.1" (PROP)
(LIFT-IF) (ASSERT) (REPLACE –2 :HIDE? T)
(PROP) →→ (USE "INV_2_reach") (EXPAND "INV_5")
(("2.1.1.1" (ASSERT)) →→ (EXPAND "INV_2") (PROPAX))))))
("2.1.1.2" (ASSERT)) →→ (INST?)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 5: PVS Proof of Invariant I5 (Devillers et al.)



ure 3 of the TAME proof of Invariant I5 illustrates, a TAME
proof can be understood by referring only to the speci�ca-
tion of the automaton and its invariants, without rerunning
it in the PVS proof checker. PVS proofs in general do not
have this property. For example, one must step through
the proof in Figure 5 with the PVS proof checker to de-
termine the contributions of many of the steps, such as
(PROP), (SKOSIMP*), (HIDE �1), (INST?), (REPLACE
�2 :HIDE? T), and (LIFT-IF) in the �rst column.

The PVS encoding of state invariant lemmas is slightly dif-
ferent from the TAME encoding. Most invariants|those
proved by induction|have two associated lemmas: the �rst
lemma states that the invariant holds in start states and is
preserved by transitions, and the second (proved trivially
from the �rst) states that the invariant holds for all reach-
able states. When induction is not required in the proof|
i.e., when the invariant follows from other invariants|only
the second lemma is needed. The TAME encoding of
every state invariant lemma is equivalent to the second PVS
lemma. For proofs requiring induction, the strategy
AUTO INDUCT �rst reduces this lemma to the equiv-
alent of the �rst PVS lemma before performing many of the
standard initial proof steps. Thus, the TAME proofs by in-
duction of invariants correspond to the PVS proofs of the
�rst associated lemma in the PVS encoding.

The di�erence between corresponding TAME proofs and
PVS proofs is illustrated by the TAME and PVS proofs
for I5 in Figures 4 and 5. Both proofs were created by in-
teractive use of the PVS prover, with the user supplying all
the information in the proofs (except the parts in italics).
An obvious di�erence between the proofs is the number of
proof steps: the TAME proof requires the user to supply
only 14 steps, while the PVS proof requires the user to sup-
ply 111 steps. The two proofs also have di�erent structures.
The PVS proof tree (see Figure 5) has two branches at the
top level, with the second divided into �ve parts. The �rst
branch corresponds to the base case of the induction proof,
while the �ve parts into which the second branch divides cor-
respond to the �ve induction cases|one for each of the �ve
actions of TIP (see Appendix A). By contrast, the TAME
proof tree (see Figure 4) has three top level branches.

Although the two proofs have di�erent structures, some re-
lationships can be found. The PVS proof clearly has re-
peating patterns; the TAME strategies take advantage of
such repeating patterns to produce higher-level proof steps.
One pattern, which appears only once in this proof, is the
application of another invariant. The three arrows at the
bottom of the second column of the PVS proof in Figure 5
mark the steps that apply Invariant I2 to the current state
(before the action) and the skolem constant for the edge
e of Invariant I5. In the TAME proof in Figure 4, this is
accomplished by the proof step (APPLY INV LEMMA
\2" \e theorem") in the second proof branch (also marked
with an arrow). Most of the repeating patterns are han-
dled by either AUTO INDUCT or TRY SIMP. For ex-
ample, the base case and last two induction cases, whose
proofs are \obvious" to a human, are done automatically by
AUTO INDUCT. Hence the three top level branches in
TAME proof correspond to the branches \2.1", \2.2", and
\2.3" of the PVS proof (though not in that order) repre-
senting the three nontrivial action cases.

The proof execution times in the TIP example average about
three times as long for the TAME proofs as for their corre-
sponding PVS proofs (e.g., the longest proof|of three in-
variants combined|took 37 seconds for TAME vs 15 sec-
onds for PVS3). However, the relative simplicity and clarity
of the TAME proofs strongly suggests that the human time
needed to construct the proofs with TAME is considerably
shorter than that needed to construct proofs with the PVS-
based approach of [12].

Comparing Speci�cations. As expected of two indepen-
dent encodings of a problem, the PVS and TAME speci�ca-
tions have rather di�erent structures. The PVS speci�cation
of the automaton TIP involves a large set of automaton-
speci�c theories with a complex import structure having sev-
eral (around nine) levels. Moreover, the organization of the
import structure is at least partly problem-speci�c. Thus,
how one would use the same methodology to specify a dif-
ferent I/O automaton in PVS is not completely clear. In
contrast, the TAME speci�cation of TIP is essentially a sin-
gle automaton-speci�c theory that imports instantiations of
a small collection of generic theories. Only one of these
generic theories|the theory states, which combines the
non-default part of the state from the TAME template with
the default part associated with time values|involves the
automaton de�nition; the others are used in theorem prov-
ing support. Hence unlike the PVS speci�cation, the TAME
speci�cation of the automaton involves almost no layering
of de�nitions. As a result, the TAME speci�cation is more
easily grasped as a whole, and its correspondence to the
original I/O automaton description is easier to see. There
are additional, automaton-speci�c theories associated with
the TAME speci�cation that can be derived in a standard,
automatable way from the automaton speci�cation. These
theories supply lemmas to the generic TAME strategies.

The PVS and TAME speci�cations of TIP also di�er in the
way they capture the transitions. In the PVS speci�cation,
each transition is described using the combined information
from the precondition and e�ect of each action. In TAME,
the preconditions and e�ects of actions are de�ned sepa-
rately. In a few instances, some information from the pre-
condition is needed as a guard in the de�nition of the e�ect
for the de�nition to pass typechecking. Experience with
many examples has shown that in practice, this rarely hap-
pens. When possible, separating the precondition and e�ect
of an action provides an advantage in creating understand-
able induction proofs: it allows one to determine just when
the precondition is important in the induction step corre-
sponding to that action. Thus, it allows one to determine
whether a speci�cation property might be a�ected when a
precondition is changed in the speci�cation.

Beyond Invariants: Simulation and Re�nement. Be-
cause PVS lacks support for de�ning a general automaton
type and for passing theory parameters to theories, com-
pletely general de�nitions of simulation and re�nement (see
[22]) are impossible to express in PVS. For this reason,
TAME does not yet include specialized support for proving
simulations or re�nements. However, the PVS speci�cation
of TIP does include a de�nition of the re�nement relation,
using the most convenient general form that can currently

3These times are for PVS 2.2 on an UltraSPARC-II.



be provided with PVS.4 In addition, the PVS proofs for TIP
include a proof that TIP is a re�nement of another automa-
ton called SPEC . In this respect, the PVS speci�cation and
proofs have an advantage over the TAME speci�cation and
proofs. The generic theories supporting the de�nition of re-
�nement in the PVS speci�cation can almost certainly be
adapted for use with a new TAME \re�nement" template.
Rather than use this approach, however, a future version of
TAME will use PVS support for theory parameters (to be
provided in a future version of PVS [19]) to provide a generic
re�nement template and associated proof strategies.

4. SECOND CASE STUDY
In the second case study, the third author applied TAME
�rst to examples from Romijn's solution to the RPC-Memory
Problem [28, 27], and then to TIP and its invariants [12,
11]. For the RPC-Memory example, this required specify-
ing three I/O automata (called Memory* , MemoryImp, and
Imp), and proving 24 associated invariants. In the case of
TIP , she used TAME to specify the single automaton and to
check the proofs of the 15 invariants for which hand proofs
were supplied. (Two additional TIP invariants for which no
hand proofs were given were later proved by the �rst author
using TAME.) Below, we �rst describe the TIP and RPC-
Memory examples. We then discuss the time required by the
third author, special problems she had to solve, the extent
to which the TAME strategies were su�cient for mechaniz-
ing the proofs, and some errors in speci�cations and proofs
that were discovered during the mechanization.

The Examples. The TIP example from [12] is a speci�-
cation and analysis of the leader election algorithm forming
the core of the tree identify phase of the physical layer of the
IEEE 1394 high performance serial multimedia bus protocol.
The goal of the analysis is to establish the property \For
an arbitrary tree topology, exactly one leader is elected."
Half of this property (\at most one leader is elected") is
proved as TIP Invariant I15 (see Appendix A). The RPC-
Memory problem, which was posed by Broy and Lamport
at the 1994 Dagstuhl Seminar on Reactive Systems, con-
cerns the speci�cation of a memory component and a remote
procedure call (RPC) component for a distributed system
and the implementation of both. (The TAME speci�cations
and proofs for these examples can be found at the URL
http://chacs.nrl.navy.mil/projects/tame.)

Time Required. The third author required approximately
a week to read and understand earlier TAME speci�cations.
These speci�cations include auxiliary theories, which are de-
rived from a template instantiation and currently must be
generated by hand. In addition, she needed about a day to
learn how to use TAME to obtain a proof.

Once these initial barriers were overcome, specifying Mem-
ory* in TAME and creating its auxiliary theories required
about two days, and the proofs of its three invariants, plus a
fourth auxiliary invariant, required only a few hours. Some
of this time was used to discover the need for and the formu-
lation of the auxiliary invariant. Specifying MemoryImp in
TAME required only a few days. Proving its 12 invariants
required about two weeks. The time required to prove these

4This de�nition makes use of a parameterized automaton
type de�ned in a theory parameterized by the action and
state types.

12 invariants was longer for a combination of reasons. First,
the proofs of these invariants were more complex than the
proofs of the Memory* invariants. Because the proof of one
invariant was only loosely sketched, some time was required
to determine all of the facts, including an additional invari-
ant lemma, required in its proof. Trying to understand the
scopes of the quanti�ers in one of the invariants led to a
weaker initial formulation of the invariant that was insu�-
cient for the proofs of later invariants, and this had to be
recti�ed. Finally, the third author encountered some situa-
tions in which the TAME strategies had to be supplemented
by special knowledge and the direct use of PVS. Once appro-
priate improvements were made to TAME (see Section 5.3),
she was able to complete the proofs. After her experience
with Memory* and MemoryImp, specifying Imp and prov-
ing its seven invariants took only three days, and specifying
TIP and proving its 15 invariants took only �ve days.

Special Problems. While translating I/O automata speci-
�cations into the TAME template is largely straightforward,
in this study, creativity was needed for some aspects of the
translations. For the most part, these aspects concerned
type de�nitions. For example, the speci�cation of Memory-
Imp required the composition of several I/O automata spec-
i�cations into a single TAME speci�cation. In such compo-
sitions, output actions of one automaton are combined with
input actions of another. For at least one combined action,
creativity was required in de�ning the parameter types to
make an output action and an input action compatible. In
addition, several state variable and action parameter types
in the RPC-Memory automata had complex subtype rela-
tionships. The third author's original de�nitions of these re-
lationships in TAME led to several unprovable TCCs (type
correctness conditions generated by the PVS typechecker).
One approach to making the TCCs provable is to include
axioms describing the subtype relationships in the speci�-
cation. Instead, the third author de�ned the types as ap-
propriate subtypes of a PVS datatype. Doing this permits
the TCCs to be proved automatically in PVS and avoids the
possible introduction of inconsistent axioms.

Another case in which some sophistication was needed to
represent an I/O automaton in TAME was in a step of Imp
using a for construct to simultaneously update a set of vari-
ables whose indices satis�ed a certain predicate. Because
these variables could not be enumerated, representing this
step in TAME required the use of the LAMBDA construct
in PVS.

In addition to the information required in the TAME tem-
plate, auxiliary information is sometimes needed. For the
RPC-Memory automata, a few auxiliary functions and pred-
icates de�ned in the original I/O automata speci�cations
were also included in the TAME speci�cations. For TIP ,
a few auxiliary results about data structures were also re-
quired. A small set of lemmas about the relationship be-
tween edges and their reverse edges was needed to mecha-
nize those steps in hand proofs whose justi�cation in [11] was
\math". These were simple enough to prove using GRIND,
PVS's general automatic proof step.5 In addition, a subset

5GRIND fails to terminate on one of the proofs and needs
to be helped by APPLY-EXTENSIONALITY in another.
Evidence exists that these complications are due to a bug in
PVS. We have reported the bug to the PVS implementors.



of the theory of tree-structured digraphs was needed in the
proof of Invariant I15. Rather than using the full theory
developed by Devillers et al., the third author simply deter-
mined the essential fact needed about such digraphs|that
they are connected|and included it as an axiom. Using this
axiom, she proved several auxiliary invariants needed in the
proof of I15.

Su�ciency of the TAME Strategies. Once improve-
ments to the TAME strategies (due to feedback from the
third author) were complete, the strategies listed in Fig-
ure 2 were almost su�cient to obtain all of the proofs for
the RPC-Memory example. APPLY IND HYP andAP-
PLY LEMMA were not needed. In a few places, new
TAME strategies (INST IN and SKOLEM IN, which are
described in Section 5.3) and the PVS steps EXPAND and
INST were used.

The proofs of the TIP invariants used all of the strate-
gies in Figure 2, together with INST IN, SKOLEM IN,
EXPAND, and INST; in addition, the PVS step SPLIT
was used to separate threads in the combined proofs of
several lemmas, and two additional TAME steps, COM-
PUTE POSTSTATE and DIRECT INDUCTION
were required. The step COMPUTE POSTSTATE was
needed to introduce facts about the poststate required in
a proof in which it was natural to refer to the poststate
in a supposition introduced with SUPPOSE. The proof
of one auxiliary invariant lemma for TIP introduced by
the third author required induction over the natural num-
bers, but not over the reachable states of TIP . She mecha-
nized this proof using variants of the PVS SKOLEM com-
mand, PVS's EXPAND, INDUCT, and INST commands,
and TAME's APPLY INV LEMMA strategy. The step
DIRECT INDUCTION was developed to prove invari-
ants whose proof requires mathematical induction followed
by direct (non-induction) proofs of the branches. With the
aid of DIRECT INDUCTION, the proof can be mech-
anized using PVS's EXPAND, together with the TAME
strategies APPLY INV LEMMA, SKOLEM IN, and
APPLY IND HYP (used to apply the mathematical in-
duction hypothesis). Whether DIRECT INDUCTION
will be useful in other examples is an open question.

Speci�cation and Proof Errors Discovered. The spec-
i�cations and proofs of both the RPC-Memory and TIP ex-
amples were very carefully done. Thus, the third author
uncovered only a few errors. Specifying the RPC-Memory
automata in TAME and applying the PVS typechecker ex-
posed a few cases of incompleteness and inconsistency in the
speci�cations. For example, the intended types of certain
constants were unclear, and there was a type inconsistency
in the de�nition and use of one function. No speci�cation
errors were found in the TIP example, which is not sur-
prising, since this example had already been proved in PVS.
But the PVS proofs for TIP were not derived from the hand
proofs, so although the TIP invariants had been checked,
their hand proofs had not been checked. Using TAME, the
third author discovered a few cases of incorrect inferences
or justi�cations in both the hand proofs for TIP and the
RPC-Memory proofs. She was able to correct all of these
problems in the TAME proofs, usually in a very straight-
forward way, and in one case by identifying and proving an
auxiliary invariant. Thus, like Rudnicki and Trybulec [29],

she found that Lamport-style proofs, though very structured
and detailed, are still informal and as a result may contain
incorrect or missing details. Her results led to corrections
by Romijn and Devillers et al. in both the speci�cations and
proofs in [28, 27, 11].

5. DISCUSSION
This section presents several observations resulting from our
case studies. First, as indicated in Sections 3 and 4, TAME
proofs are readily constructed from hand proofs that give
su�cient detail. A hand proof that indicates which facts
were used on which proof branches and which subcases need
to be considered usually provides su�cient detail; details of
inferences drawn from the facts are normally not required.
In previous applications (e.g. [3, 5]), the hand proofs mech-
anized with TAME were English language proofs. As stated
in Section 4, the majority of the proofs mechanized by the
third author using TAME were Lamport-style proofs. These
proved to be as straightforward to mechanize in TAME as
English language proofs. Section 5.1 gives an example of
the correspondence between a Lamport-style proof and the
TAME proof derived from it. Second, as noted in Sec-
tions 2 and 3, TAME proofs are intended to be understand-
able without reference to the PVS proof checker. In Sec-
tion 5.2, we describe how TAME proofs can actually be in-
terpreted as English language proofs, using the TAME proof
from Section 5.1 as an example. Finally, several improve-
ments were made to TAME as a result of the third author's
experience. Section 5.3 discusses these improvements and
some issues they raise.

5.1 Constructing TAME Proofs
The proof in Figure 6 (provided to the reader as an aid)
describes in English the complete TAME proof (see Figure 7)
of TIP Invariant I4. As an illustration of how a TAME proof
can be obtained from a Lamport-style proof, Figures 7 and 8
show the correspondence between the TAME steps and the
relevant steps from a Lamport-style proof of Invariant I4.
These relevant steps are shown in Figure 8, which contains
the single branch of the hand proof that TAME found to
be nontrivial; the remainder of the Lamport-style proof was
done automatically by TAME.

To understand the relationship between the two kinds of
proofs, we can compare the Lamport-style and TAME proofs
of I4 in Figures 8 and 7. In the Lamport-style proof in
Figure 8, the values s and t represent the prestate and
poststate in the induction step, and the values f , g, and
v0 are, respectively, the skolem constants for the quanti-
�ed variables e, f , and v in I4, which TAME automatically
names e theorem, f theorem, and v theorem. The action
C KNOWN(v) in the Lamport proof corresponds to the ac-
tion children known(childV action) in the TAME proof;
the name childV action is constructed automatically by
TAME from the name of the formal parameter childV of
children known. We added annotations (see the right-hand
column of Figure 7) to the TAME proof to show, for each
of its steps or branches, the step of the Lamport proof con-
taining a corresponding inference or justi�cation. For ex-
ample, the appeal \by IH" to the inductive hypothesis at
step < 3:1 > in the Lamport-style proof is handled au-
tomatically by TAME's AUTO INDUCT strategy since,
for this proof, the correct instantiation of its variables is the



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

To prove: For every reachable state s,
for all edges e and f and every vertex v,
if target(e) = target(f) = v and e =/ f,
then init(v) or child(e) or child(f).

Proof: The proof is by induction. The assertion is trivial for the base case, i.e., when s
is an initial state. For each action of TIP, it remains to prove the corresponding induction
case, i.e., that the assertion is preserved by that action. Only one of the induction cases isiiiiiiiiiiiiiiiiiiiiiiiiiiii
nontrivial: the case of the action children_known(childV).iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Thus, consider the case when the action is children_known(childV). Let the
value of the parameter childV of children_known be childV_action. Let
the state before this action be prestate. Let the edges e and f and the vertex v be
e_theorem, f_theorem, and v_theorem. Consider separately two cases. Sup-
pose first that v_theorem = childV_action. In this case, introduce the fact that

init(childV_action, prestate) ∧

∀ e:tov(childV_action), f:tov(childV_action).

child(e,prestate) ∨ child(f,prestate) ∨ e = f

by appealing to the specific precondition of children_known(childV_action)
in the state prestate. Instantiating the second part of this precondition with
e_theorem and f_theorem, the remainder of the proof in this case is now obvious.
The fact that e_theorem and f_theorem belong to the subtype
tov(childV_action) of the type Edges is also obvious. The proof in the case
v_theorem =/ childV_action is obvious.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 6: English translation of TAME proof of I4

Inv 4(s:states): bool =

(FORALL (e,f:Edges, v:Vertices):

(target(e)=v and target(f)=v and not(e=f))

=> (init(v,s) or child(e,s) or child(f,s)))

(\" (AUTO INDUCT)
;; Case children known(childV action) < 3 >;< 3:1 >;< 3:2 >;

< 3:2:1 >
(SUPPOSE \v theorem = childV action") < 3:2:2 >
((\1" ;; Suppose v theorem = childV action < 3:2:3 >

(APPLY SPECIFIC PRECOND) < 3:2:3:1 >
;; Applying the precondition
;; init(childV action, prestate)
;; AND
;; (FORALL (e: tov(childV action)):
;; FORALL (f: tov(childV action)):
;; child(e, prestate) OR
;; child(f, prestate) OR e = f)
(INST \speci�c-precondition part 2"

\e theorem" \f theorem")
((\1.1" (TRY SIMP)) < 3:2:3:2 >;< 3:2:3:3 >
(\1.2" (TRY SIMP)) < 3:2:3:1 >
(\1.3" (TRY SIMP)))) < 3:2:3:1 >

(\2" ;; Suppose not [v theorem = childV action] < 3:2:4 >
(TRY SIMP)))) < 3:2:4:1 >;< 3:2:4:2 >

< 3:2:5 >;< 3:3 >

Figure 7: Complete TAME proof (verbose) of I4

I4 = 8e;f;vtarget(e) = target(f) = v ^ e 6= f ) init(v) _ child[e] _ child[f ]

<3> Assume a = C KNOWN(v), v 2 V
<3.1> . s j= I4 (by IH)
<3.2> . Take arbitrary f; g; v0 such that

target(f) = target(g) = v ^ g 6= f

<3.2.1> . . s j= init(v0) _ child[f ] _ child[g]
<3.2.2> . . Case distinction on v0 = v
<3.2.3> . . Assume v0 = v
<3.2.3.1> . . . s j= child[f ] _ child[g] (pre. C KNOWN (v) and f; g 2 to(v))
<3.2.3.2> . . . t j= child[f ] _ child[g] (e�. C KNOWN (v) does not change child)
<3.2.3.3> . . . t j= init(v) _ child[f ] _ child[g]
<3.2.4> . . Assume :(v0 = v)
<3.2.4.1> . . . s j= init(v0) _ child[f ] _ child[g] (by <3.2.1>)
<3.2.4.2> . . . t j= init(v0) _ child[f ] _ child[g] (e�. C KNOWN (v) does not change child

or init[v0 ] by <3.2.4>)
<3.2.5> . . t j= init(v0) _ child[f ] _ child[g]
<3.3> . t j= I4 (def. I4)

Figure 8: Nontrivial branch of Lamport-style proof
of I4

skolem constants. The only steps the TAME user must sup-
ply, besides TRY SIMP, are the SUPPOSE for the case
distinction at step < 3:2:2 > and the APPLY SPECI-
FIC PRECOND and INST corresponding to application
of the precondition to f and g at step < 3:2:3:1 >. Check-
ing that f and g are of type to(v) is handled by proving
the TCCs generated by PVS as the result of the instanti-
ation step INST|this is accomplished by the proof steps
TRY SIMP at \1.2" and \1.3" in the TAME proof. In-
troducing the e�ect of the action and setting up Invariant
I4 in the poststate as a proof goal are both handled auto-
matically in the TAME proof by AUTO INDUCT, and
appeals to previous proof steps are handled automatically
in the TAME proof by the �nal TRY SIMP.

5.2 Explaining TAME Proofs
Because the meanings of TAME proof steps are essentially
independent of the proof state current at the time they are
executed by the PVS proof checker, TAME proofs can be
understood from their saved scripts by referring to the orig-
inal speci�cation and by knowing the conventions TAME
uses for skolemization and instantiation. Thus, given the
TAME proof of Figure 7, it is fairly straightforward to derive
the equivalent English language proof in Figure 6. Knowl-
edge of TAME's conventions about skolemization is used in
specializing the action parameter childV to childV action,
and s, e, f, and v in the theorem to prestate, e theorem,
f theorem, and v theorem. One convention about instanti-
ation is used in the INST command in the TAME proof: a
precondition in the form of a conjunction is broken down into
\ part 1", \ part 2", and so on, in order. A second conven-
tion about instantiation is reected in the English transla-
tion in Figure 3 of the APPLY INV LEMMA step in the
TAME proof in Figure 4: unless a state argument is given,
the invariant lemma is applied to the state prestate. One
additional question that arises in interpreting the TAME
proof in Figure 7 is why the INST step in the proof results
in three subgoals instead of one. When extra subgoals from
an INST occur, PVS has generated one or more TCCs as
extra proof branches, requiring the user to show that values
used in the instantiation have the correct types.

Aside from the problem with possible TCCs, the deriva-
tion of an English language proof from a TAME proof is
straightforward enough to be automatable, and in fact, we
have recently implemented a prototype translator of saved
TAME proofs. Note that the TAME proof in Figure 7 is a
verbose TAME proof, in contrast to the non-verbose TAME
proof in Figure 4. Thus, details such as the actual fact
introduced by APPLY SPECIFIC PRECOND in Fig-
ure 7 can be incorporated into the English version. Had the
proof in Figure 4 been verbose, the actual fact introduced
by APPLY INV LEMMA would have been displayed in
the TAME proof (as well as the facts introduced by each
of the three uses of APPLY SPECIFIC PRECOND).
An alternative to translating TAME proofs from their saved
scripts to obtain an English language version is to create
an English language version simultaneously with the TAME
version. Implementing this technique would allow even more
detail to be incorporated in the English version, if desired,
and would better facilitate interpreting extra TCC subgoals
in English.



5.3 Improvements Made to TAME
Several improvements were made to the template, the strate-
gies, and the supporting theories of TAME as the result of
feedback from the third author. The �rst improvement gen-
eralizes the template. Improvements to the strategies have
made TAME more user-friendly by reducing the amount
of low-level reasoning associated with certain proof steps.
Improvements to the supporting theories extend the scope
of the high-level reasoning supported in TAME. We dis-
cuss these improvements below, along with some issues they
raise.

Improving the Template. The base case of induction
proofs corresponding to the start states is usually trivial
to prove. The strategy AUTO INDUCT is designed to
prove the base case automatically, when possible. Although
none of the TAME templates enforce any condition on
the form of the start state predicate start, the automatic
proof of the base case by AUTO INDUCT works best if
start(s) is expressed as an equality s = <start-state>,
where <start-state> is a record value. In previous appli-
cations of TAME, each automaton had a single start state,
and thus the convention was that <start-state> was an
explicit record giving the initial values of all state variables.

In the RPC-Memory example, the third author encountered
an automaton in which the start state was not unique: initial
values were given for only some of the basic state variables.
She therefore developed a new template convention for the
start state, in which <start-state> is a record with its time-
related components assigned the standard initial values and
its basic component (representing the basic state variables)
assigned its \old" value updated with values for those vari-
ables whose initial values are speci�ed. This is easily done
using the PVS construct WITH for updating records and
functions and has the e�ect of leaving the non-updated vari-
ables of the basic state unspeci�ed, as desired. Moreover,
the strategy AUTO INDUCT works just as well for prov-
ing base cases with the new conventional form for start(s)
as it did with the old one.

Improving the Strategies. As noted in Section 4, the
third author had di�culty translating a few of the steps
from hand proofs into TAME. One such step was the ap-
plication of an invariant lemma to the poststate of a tran-
sition in an induction step. The default used by the TAME
step APPLY INV LEMMA is to apply the lemma to
prestate. TAME previously represented the poststate as
trans(<action>,prestate), where <action> is the action
of the induction step, and maintained among the hypothe-
ses the fact that trans(<action>,prestate) is reachable,
to facilitate application of invariant lemmas to the post-
state. However, this representation of the poststate com-
plicated applying an invariant lemma. Not only did the
user have to supply trans(<action>,prestate) as an ar-
gument to APPLY INV LEMMA, where <action> it-
self could be an expression with parameters, but after doing
this, the user had to explicitly expand the transition func-
tion trans. The third author's di�culties inspired improve-
ments toAUTO INDUCT andAPPLY INV LEMMA
that hide this complexity from the user. The term
trans(<action>,prestate) is now represented simply as
poststate, and to apply an invariant lemma to the post-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
* 1. length(emptylist) = 0

2. ∀ L:list. length(L) = 0 ⇒ L = emptylist

3. ∀ n:nat, e:element, L:list. length(L) = n ⇒ length(cons(e,L)) = n+1

* 4. ∀ e:element, L:list. L = emptylist ⇒ length(cons(e,L)) = 1

* 5. ∀ n:nat, e:element, L:list. L =/ emptylist ∧ length(L) = n ⇒ length(cdr(L)) = n−1

* 6. ∀ n:nat, e:element, L:list. L =/ emptylist ∧ length(L) ≤ n ⇒ length(cdr(L)) ≤ n−1

7. ∀ L:list. (length(L) < 0) = FALSE
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 9: Rewrite rules for lists used by TAME

state, the user simply applies APPLY INV LEMMA to
the argument poststate and any other arguments to the
lemma.

As noted in reference [4], the inability of the user to instan-
tiate or skolemize with respect to embedded quanti�ers in
PVS sometimes makes it di�cult to follow the structure of
a hand proof using PVS. The third author encountered this
problem in some proofs of the RPC-Memory example. To
address the problem, two new strategies, called INST IN
and SKOLEM IN, were added to TAME to approximate
internal instantiation and skolemization. These strategies
perform automated simpli�cation in an attempt to handle
the non-quanti�ed parts of a formula, and then use the stan-
dard PVS proof steps INST and SKOLEM. Although some
wasteful proof branching can result (this happened with
one RPC-Memory lemma), this approach handles embed-
ded quanti�ers well in many cases.

Improving the Supporting Theories. The state vari-
ables used in I/O automata speci�cations do not always
have simple types. For example, some automata from the
RPC-Memory example use state variables that must be rep-
resented as \datatypes" using the PVS DATATYPE con-
struct. As noted in Section 2, TAME supports \obvious"
reasoning about datatypes using auxiliary theories gener-
ated from a template instantiation. Previous to the third au-
thor's use of TAME, these auxiliary theories contained only
lemmas to support reasoning about the datatype actions.6

Because of the additional datatypes used in the RPC-Mem-
ory automata, the auxiliary theories now include lemmas
from all datatypes in a template instantiation.

In the speci�cation of the automaton TIP from [12] (see
Appendix A), the type of the state variable mq(e), where e

is an edge, is de�ned to be Bool*, that is, a list of Booleans.
Several of the TIP invariant lemmas involving mq(e) require
reasoning about lengths of lists. Because PVS has a built-in
type list[T], where T is a type parameter, it is reasonable
to add auxiliary lemmas to support reasoning about lengths
of lists. Figure 9 shows the set of lemmas used as rewrite
rules for lists in TAME. Those rules with an asterisk were
actually applied by TAME in proving the TIP invariants.
The PVS proof in Figure 5 contains several instances of the
PVS command `(EXPAND \length")'; these mark places
where simple reasoning about length is occurring. With the
rules in Figure 9, the TAME user does not need to guide
PVS through this reasoning.

While one might argue that rewrite rules for lists should be
standard in TAME because list[T] is a standard type in

6For LV timed automata, there are also lemmas for the
datatype time.



PVS, there are many examples in which state variables have
other complex types, as we discovered in applying TAME to
some of the invariant lemmas of [14]. For reasons of proof
e�ciency, the number of rewrite rules that are always ac-
tive should be limited to those that are relevant. Thus, a
practical approach for handling \obvious" reasoning about
complex types is to use a library of PVS theories containing
the lemmas needed to support such reasoning. Such theo-
ries need to be developed with care; we do not guarantee
the theory in Figure 9 to be the best theory to support ob-
vious reasoning about lengths of lists. The extent to which
existing libraries developed by other members of the PVS
user community would be useful in TAME is still to be de-
termined.

6. RELATED WORK

An increasing number of proof assistants, including assis-
tants for the Duration Calculus [30], for the TRIO logic
[1], and for proving invariant properties of DisCo speci�-
cations [17], use PVS as the underlying prover. The Du-
ration Calculus and TRIO assistants support proofs using
steps from particular logics. The DisCo assistant supports
proofs of properties of DisCo speci�cations, using Lamport's
Temporal Logic of Actions, with specialized PVS strategies
generated by a compiler. These strategies, though uniform
in concept, are speci�c to each given application. A simi-
lar approach was used in an earlier version of TAME; PVS
enhancements, especially the documentation of the inter-
nal structure of PVS sequents, have allowed us to make the
TAME strategies more generic.

Several researchers have applied mechanical theorem provers
to LV timed automata or I/O automata. In addition to the
application of PVS described in [12], reference [20] describes
how the Larch theorem prover LP was used to prove proper-
ties of several protocols speci�ed as LV timed automata, and
reference [26] describes a veri�cation environment for I/O
automata based on Isabelle; like [12], both include simula-
tion proofs as well as proofs of invariants. In addition, [26]
develops a detailed metatheory for I/O automata. TAME
has an advantage over Larch and Isabelle: it produces com-
pact, informative proof scripts. Although Larch provides
detailed proof scripts with some information on the content
of a proof, Larch does not support the matching of high
level natural proof steps with user-de�ned strategies, nor
the automatic documentation of a proof through comments
provided by TAME. While Isabelle tactics perform some of
the services of the TAME strategies [26], Isabelle does not
save proof scripts for completed proofs.

A toolset has been developed that provides an automatic
translator from the IOA language for I/O automata to Larch
speci�cations and an interface to the Larch theorem prover
LP [15]. This toolset will eventually include a similar trans-
lator to PVS that is being developed by Devillers and Vaan-
drager; a prototype now exists [13]. TAME currently has
a prototype translator from speci�cations in the SCR lan-
guage to TAME speci�cations [6], and an automatic trans-
lator from IOA speci�cations is planned.

7. CONCLUSION
In [24], Miller discusses several major problems encountered
in the AAMP5 project, in which PVS was used to prove the
correctness of a set of microcode instructions. Two problems
were how to organize the speci�cation, and how to structure
complex proofs. He also notes that the learning curve in this
project was very steep, that many supporting theories had
to be developed, and that the robustness of proofs became
a concern when speci�cations were modi�ed.

Within its domain of application, TAME solves most of
these problems. In particular, it provides templates to or-
ganize speci�cations of automata, high level proof steps de-
signed to make proof structures more understandable, and
supporting theories appropriate to the domain. The third
author's experience with TAME lends support to our belief
that the learning curve for TAME is much less steep than
that for the direct use of PVS. TAME proofs tend to be fairly
robust, because they use high level proof steps that do not
depend on details of the sequent in the current proof goal.
(This dependence is present in several places in the PVS
proof in our �rst case study.) In addition, TAME proofs
are usually easy to modify when a change in a speci�cation
requires some changes in a proof.

In [24], Miller also notes that productivity in the AAMP5
project required the same individuals to serve as both do-
main experts and PVS experts. Because TAME proofs can
be understood separately from PVS, we believe that TAME
can provide a way to allow domain experts to understand
the results of a veri�cation without becoming PVS experts,
and to communicate high-level proof outlines to PVS (or
TAME) experts that can be easily checked in TAME. This
has been demonstrated to some extent by our previous ex-
perience with TAME and by the third author's experience
with the RPC-Memory example.

Thus, we believe that specialized interfaces such as TAME
can solve many of the problems associated with introducing
the use of PVS into industrial practice. This is consistent
with the point of view of Crow and Di Vito [10], who state
in that:

Applying formal methods \right out of the box"
is di�cult. Tailoring the methods to the appli-
cation at hand is both necessary and desirable.

As noted in Section 2, TAME is based on template speci�-
cations for given system models, standard supporting the-
ories, and special strategies to implement reasoning steps
appropriate to the models. With an appropriate automatic
speci�cation translator, a specialized interface can also al-
low developers to create speci�cations in an environment
familiar to them. For TAME, such a translator has been
developed for speci�cations created in the SCR toolset [6].
We believe that the same methods can be followed to cre-
ate specialized interfaces in other application domains. In
fact, similar methods were used to some extent in the other
PVS-based proof assistants discussed in Section 6. An open
question is whether specialized interfaces such as TAME can
be developed to address the needs of practitioners working
in di�erent application domains.



8. REFERENCES

[1] Andrea Alborghetti, Angelo Gargantini, and Angelo
Morzenti. Providing automated support to deductive
analysis of time critical systems. In Proc. 6th
European Software Engineering Conference
(ESEC/FSE'97), Lect. Notes in Comp. Sci., pages
211{226. Springer-Verlag, 1997.

[2] M. Archer. Tools for simplifying proofs of properties
of timed automata: The TAME template, theories,
and strategies. Technical Report
NRL/MR/5540{99-8359, NRL, Wash., DC, 1999.

[3] M. Archer and C. Heitmeyer. Mechanical veri�cation
of timed automata: A case study. In Proc. 1996 IEEE
Real-Time Technology and Applications Symp.
(RTAS'96), pages 192{203. IEEE Computer Society
Press, 1996.

[4] Myla Archer and Constance Heitmeyer. Human-style
theorem proving using PVS. In E. L. Gunter and
A. Felty, editors, Theorem Proving in Higher Order
Logics (TPHOLs'97), volume 1275 of Lect. Notes in
Comp. Sci., pages 33{48. Springer-Verlag, 1997.

[5] Myla Archer and Constance Heitmeyer. Verifying
hybrid systems modeled as timed automata: A case
study. In Hybrid and Real-Time Systems (HART'97),
volume 1201 of Lect. Notes in Comp. Sci., pages
171{185. Springer-Verlag, 1997.

[6] Myla Archer, Constance Heitmeyer, and Steve Sims.
TAME: A PVS interface to simplify proofs for
automata models. In Proc. User Interfaces for
Theorem Provers 1998 (UITP '98), Eindhoven,
Netherlands, July 1998.

[7] Ricky W. Butler. An introduction to requirements
capture using PVS: Speci�cation of a simple autopilot,
NASA Technical Memorandum 110255. NASA
Langley Research Center, May 1996.

[8] Ricky W. Butler, James L. Caldwell, Victor A.
Carre~no, C. Michael Holloway, Paul S. Miner, and Ben
L. Di Vito. NASA Langley's research and
technology-transfer program in formal methods. In
Proc. 10th Annual Conf. on Computer Assurance
(COMPASS'95), pages 135{149, Gaithersburg, MD,
June 1995. IEEE Computer Society Press.

[9] Judith Crow and Ben L. Di Vito. Formalizing space
shuttle software requirements. In Proc. First ACM
Workshop on Formal Methods in Software Practice
(FMSP'96), pages 40{48, San Diego, CA, January
1996.

[10] Judith Crow and Ben L. Di Vito. Formalizing space
shuttle software requirements: Four case studies. ACM
Transactions on Software Engineering and
Methodology, 7(3):296{332, July 1998.

[11] M. Devillers. Veri�cation of a tree-identity protocol.
URL http://www.cs.kun.nl/�marcod/1394.html,
1997.

[12] M. Devillers, D. Gri�oen, J. Romijn, and
F. Vaandrager. Veri�cation of a leader election
protocol|formal methods applied to IEEE 1394.
Formal Methods in System Design, 16(3):307{320.

[13] Marco Devillers. Private communication. January,
1999.

[14] A. Fekete, N. Lynch, and A. Shvartsman. Specifying
and using a partitionable group communication
service. In Proc. Sixteenth Ann. ACM Symp. on
Principles of Distributed Computing (PODC'97),
pages 53{62, Santa Barbara, CA, August 1997.

[15] S. J. Garland and N. A. Lynch. The IOA Language
and Toolset: Support for Designing, Analyzing, and
Building Distributed Systems. Draft. MIT Laboratory
for Computer Science, August, 1998.

[16] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking
to detect safety violations in requirements
speci�cations. IEEE Trans. on Softw. Eng.,
24(11):927{948, November 1998.

[17] Pertti KelloMaki. Mechanical Veri�cation of Invariant
Properties of DisCo Speci�cations. PhD thesis,
Tampere University of Technology, Finland, November
1997.

[18] L. Lamport. How to write a proof. Technical report,
Digital Equipment Corp., System Research Center,
February 1993. Research Report 94.

[19] Patrick Lincoln. Private communication. July, 1998.

[20] Victor Luchangco. Using simulation techniques to
prove timing properties. Master's thesis,
Massachusetts Institute of Technology, June 1995.

[21] N. Lynch and M. Tuttle. An introduction to
Input/Output automata. CWI-Quarterly,
2(3):219{246, September 1989. Centrum voor
Wiskunde en Informatica, Amsterdam, The
Netherlands.

[22] N. Lynch and F. Vaandrager. Forward and backward
simulations { Part I: Untimed systems. Information
and Computation, 121(2):214{233, September 1995.

[23] N. Lynch and F. Vaandrager. Forward and backward
simulations { Part II: Timing-based systems.
Information and Computation, 128(1):1{25, July 1996.

[24] Steve Miller. The industrial use of formal methods:
Was Darwin right? In Proc. 2nd IEEE Workshop on
Industrial-Strength Formal Speci�cation Techniques,
pages 74{82, Boca Raton, FL, October, 1998.

[25] Steve Miller and Mandayam Srivas. Formal
veri�cation of the AAMP5 microprocessor: A case
study in the industrial use of formal methods. In Proc.
Workshop on Industrial-Strength Formal Speci�cation
Techniques, Boca Raton, FL, April, 1995.

[26] Olaf Mueller. A Veri�cation Environment for I/O
Automata Based on Formalized Meta-Theory. PhD
thesis, Technische Universitaet Muenchen, September
1998.



[27] J. Romijn. Tackling the RPC-Memory Speci�cation
Problem with I/O automata. Addendum. URL
http://www.cwi.nl/�judi/papers/
dagstuhl proofs.ps.gz.

[28] J. Romijn. Tackling the RPC-Memory Speci�cation
Problem with I/O automata. In M. Broy, S. Merz, and
K. Spies, editors, Formal Systems Speci�cation | The
RPC-Memory Speci�cation Case, volume 1169 of Lect.
Notes in Comp. Sci., pages 437{476. Springer-Verlag,
1996.

[29] P. Rudnicki and A. Trybulec. A note on \How to
Write a Proof". In Proc. 1992 Workshop on Types
and Proofs for Programs, June 1996. Available
through P. Rudnicki's web page at
http://www.cs.ualberta.ca/�piotr/Mizar/.

[30] J. Skakkebaek and N. Shankar. Towards a duration
calculus proof assistant in PVS. In Third Intern.
School and Symp. on Formal Techniques in Real Time
and Fault Tolerant Systems, Lect. Notes in Comp. Sci.
863. Springer-Verlag, 1994.

APPENDIX

A. THE I/O AUTOMATON TIP FROM [12]

TIP

Internal: ADD CHILD, CHILDREN KNOWN, RESOLVE CONTENTION, ACK
Output: ROOT

State Variables: init : V! Bool
contention : V! Bool
root : V! Bool

child : E! Bool
mq : E! Bool�

Init: 8v; e : init[v]
^:contention[v]
^:root[v]
^:child[e]
^mq[e] = empty

Actions:

ADD CHILD(e : E)
Precondition :
^init[target(e)]
^mq[e] 6= empty

E�ect :
child[e] := 1
mq[e] := tl(mq[e])

ACK(e : E)
Precondition :
^:init[target(e)]
^mq(e) 6= empty

E�ect :
contention[target(e)] := :hd(mq[e])
mq[e] := tl(mq[e])

RESOLV E CONTENTION(e : E)
Precondition :
^contention[source(e)]
^contention[target(e)]

E�ect :
child[e] := 1
contention[source(e)] := 0
contention[target(e)] := 0

ROOT (v : V)
Precondition :
^:init[v]
^:contention[v]
^:root[v]
^8e 2 to(v) : child[e]

E�ect :
root[v] := 1

CHILDREN KNOWN(v : V)
Precondition :
^init[v]
^8e; f 2 to(v) : child[e] _ child[f ] _ e = f

E�ect :
init[v] := 0
for e 2 from(v)domq[e] := append(child[e�1]; mq[e])

TIP Invariant I15 �

(9v8e 2 to(v) : child[e])! (9!v8e 2 to(v) : child[e])

\There is at most one node for which all incoming links are
child links."


